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Abstract. The end-point contributions in the quark longitudinal momentum fraction of the virtual photon
(γ∗) to vector meson (V ) impact factor to the diffractive electroproduction amplitude can be factorized in
terms of a generalized parton evolution of the target parton distribution. This result is used to model the
helicity amplitudes γ∗p → V p in terms of small x generalized parton distributions.

1 Introduction

The experimental analysis of diffractive vector meson pro-
duction by virtual or quasi-real photons (γp → V p∗) at
HERA [1–10] has been accompanied by numerous theoret-
ical and phenomenological studies, e.g. [11–23]. The main
questions under discussion are the typical ones for semi-
hard processes: To what extent does perturbative QCD
apply? What can we learn about the non-perturbative
hadronic interactions?

The factorization proof [25] gives a first answer. In
the helicity amplitudes with λi(γ) = 0 factorization holds
and the contribution of a small-size qq̄ dipole coupled by
two gluons to the exchanged pomeron dominates by power
counting the contributions with additional soft exchanges.
For the remaining helicity amplitudes the power counting
does not result in the dominance of the short distance
contribution. This is different from the related deep virtual
Compton amplitude (DVCS, γ∗p → γ∗p), where the short
distance contribution dominates in all helicity amplitudes
[26].

In some presentations the situation is described by call-
ing the dominating short distance contribution in the he-
licity amplitude λi = λf = 0 the leading twist one and by
saying that short distance factorization must not be ex-
pected for the other helicity amplitudes because of being
of non-leading twist.

Owing to the DVCS case the latter argument looks un-
convincing. Moreover, the amplitudes with helicities dif-
ferent from λi = λf = 0 are accessible to experiment, e.g.
in the ratio of the cross sections of longitudinal to trans-
verse virtual photons and in the angular-decay distribu-
tions parameterized by the Schilling–Wolf ratios [1, 24].
If short distance factorization holds, the amplitude can
be expressed in terms of generalized parton distributions
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of the target and predictions for σL/σT [16–20] and the
Schilling–Wolf ratios [21, 22] have been obtained. In some
of the approaches the amplitudes have been treated in
analogy to the one with λi = λf = 0, i.e. with the qq̄ dipole
interacting via two gluon exchange coupled to the gener-
alized gluon distribution. However, unlike the λi = λf = 0
case, in the leading twist contribution to the other helicity
amplitudes singularities in the momentum fraction of the
quark in the dipole appear. These are related to a large
transverse size of the dipole and seem to signal the fac-
torization breakdown expected from the power counting
analysis [25].

There are controversial opinions about the appropri-
ate treatment of those end-point singularities: introduc-
ing physically motivated cut-offs, choosing damping me-
son wave functions or including damping quark formfac-
tors, or relating the argument of the parton distributions
to the increasing dipole size. In any case, the partial suc-
cess of these perturbative approaches seem to result in a
modification of the first answer to the above main ques-
tions as given by the factorization proof: The factorization
breaking effects cannot be large for all helicity amplitudes.

The connection of the end-point singularities to the
factorization breaking is referred to frequently. In a study
[27] using the operator product language these end-point
singularities appear as the obstacle to factorization.

In the present paper we end up with the opposite con-
clusion: The end-point contributions are factorizable; the
ones appearing in the quark dipole interacting by two
gluon exchange are factorized by identifying them as a
leading lnQ2 Bjorken evolution term of the two gluon (gg)
to quark–antiquark (qq̄) exchange. Our discussion relies
on a specific model of the meson light-cone wave func-
tion. It includes more than the leading twist contribution
in terms of distribution amplitudes. Although finally only
a small part of the specific information encoded in this
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wave function enters the results on the large Q2 asymp-
totics the inclusion in the wave function and resummation
of a geometric series of higher twist terms ∼

(
m2

V

Q2zz̄

)n

is
the essential point for understanding the physical meaning
of the end-point contributions.

In Sect. 2 we start with the impact factor representa-
tion of the diffractive amplitude and specifically look to
the contribution of a scattering qq̄ dipole coupled to the
pomeron exchange by two gluons. In Sect. 3 the γ∗V im-
pact factors are introduced by specifying the meson light-
cone wave function. The asymptotics for large Q2 is cal-
culated. We compare with the γ∗γ∗ impact factor and
continue this comparison in the following. Some details of
the calculations are given in the Appendix. In Sect. 4 the
logarithmic end-point contributions to the amplitudes are
identified with a leading lnQ2 contribution to the gener-
alized Bjorken evolution. In order to make this main point
clearer this identification is repeated for the γ∗p → γ∗p
amplitude with λi = λf = 1, i.e. for the well known case
related to the structure function F2(x,Q2). In Sect. 6 we
evaluate numerically the resulting leading twist terms of
the helicity amplitudes, specifying the small x parton dis-
tribution, and obtain results for quantities which can be
compared with the results of the experimental analysis:
the cross section ratio σL/σT and the angular-decay dis-
tribution (Schilling–Wolf) coefficients rα

jk in dependence
on Q2 and t.

2 Diffractive γ∗V amplitudes

A good starting point for analyzing high energy diffractive
processes is the impact factor representation of the corre-
sponding amplitude written in terms of partial waves:

Mλiλf (s,Q, q)

= s

∫ i∞

−i∞

dω
2πi

F
λiλf (ω,Q, q)

×
[(

s

M2(Q,m, q)

)ω

+
( −s
M2(Q,m, q)

)ω]
,

F
λiλf (ω,Q, q) (2.1)

=
∫

d2κd2κ′Φ
λiλf (κ,Q, q) G(κ, κ′, q, ω) ΦP (κ′, q)

This is a typical form obtained in perturbative analysis
[29, 35]; however, it is based on more general arguments
relying on the impulse approximation [30]. The field rep-
resenting the exchange interaction acts on the scattering
particles for a short time, much shorter than the time
scale of their binding or self-interaction. The field sees just
a short-time intermediate fluctuation state. The impact
factors appear as the transition matrix elements (γ∗ → V
and P → P ∗ in our case) of an operator representing the
action of the exchange field on the intermediate fluctua-
tions selecting some of the fluctuations according to their
interaction strength.

The diffractive exchange G is called a pomeron. In phe-
nomenology it is often substituted by a Regge pole or, ac-
cording to a recent proposal [28], by two poles, a soft and
a hard pomeron. In the framework of QCD we suppose the
pomeron to consist of interacting gluons. In perturbative
QCD this idea acquires a definite meaning in the BFKL
scheme [34, 35].

In the case of hard diffraction the intermediate fluctu-
ations is squeezed into a narrow space-time region (∼ 1

Q )
in the vicinity of the light cone. Only short distance modes
of the pomeron field can interact with this fluctuation
state. In this situation both the fluctuation state and the
coupling to the pomeron can be represented by perturba-
tive QCD. Moreover, one finds that the fluctuations with
a small number of partons dominates, the higher Fock
states being suppressed by powers of 1

Q . Also the exchange
with a minimal number of exchange partons dominates not
only by small couplings but, more important, by powers of
1
Q . This suppression holds if the exchanged partons carry
large transverse momenta κ, Q2 � κ2 � m2, and one has
to make sure that contributions with extra soft exchange
quanta are absent or can be absorbed into generalized par-
ton distributions.

In the diffractive vector meson production by virtual
photons the factorization in terms of a qq intermediate
fluctuation coupling to the pomeron by two gluons has
been proven on a rigourous level in the case where the
short distance scale is provided by the momentum squared
of the virtual photon with longitudinal polarization [25].

In the case of factorization via two exchanged partons
one can write

G(k, k′, q, ω) =
1

|k|2|k + q|2 G̃(k, k′, q, ω). (2.2)

In the considered case of electroproduction we have in
(2.1) M2(Q2,m, q) ≈ Q2. We pick up the leading contri-
bution in the ω integral by writing

Mλiλj =
∑

p

∫
d2κΦp(κ, q,Q)

1
|k|2|κ+ q|2G

′
p(x1, x2, q, κ).

(2.3)
G′

p stands for the unintegrated generalized parton dis-
tribution of the proton (for recent reviews see [36–38])
resulting from the convolution of the proton impact fac-
tor ΦP with the projection of the exchange G that couples
by two exchange partons (p) in the small Bjorken vari-
able limit, x1 = Q2

s , x2 = m2
V

s . The skewedness ξ = x1−x2
2

is small; we have a non-vanishing transverse momentum
transfer q.

As a simplification we replace G′
p by the derivative of

the gluon distribution at small x

G′
p =

∂

∂ ln |κ|2 [Gp(x1, x2, |q|2, |κ|2) T (κ2, Q2))]. (2.4)

Here T (κ2, Q2) is the parton Sudakov formfactor; it is
equal to 1 at κ2 = Q2 and small for κ2 � Q2.
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The relation to the standard notation introduced by
Ji is as follows:

Gp(x1, x2)=HJi
p (x, ξ), x=

x1 + x2

2
, ξ=

x1 − x2

2
. (2.5)

For the leading contribution in Q2 we expand Φ
λiλf
p

(k, q,Q2):

Φ
λiλf (κ,Q, q) (2.6)

=
(
µ2(mV , q)

Q2

)τ
k(k + q)∗ + k∗(k + q)

Q2 Cλiλf + · · ·

The leading lnQ2 contribution of the κ integral is then
obtained as

Mλiλf (s,Q, q)

=
∑

p

(
µ2(mV , q)

Q2

)τ 1
Q2C

λiλfGp(x1, x2, q, Q
2). (2.7)

As an obstacle to factorization in diffractive electro-
production with transverse polarization, mentioned in the
Introduction, one encounters large contributions from qq
fluctuation states with the longitudinal momentum frac-
tion of one of the partons (z or z̄ = 1 − z) small. The soft
scattering quark then may couple by soft exchange gluon
to the pomeron without suppression by 1/Q.

We shall investigate the expressions for impact factors
with the qq state and a model wave function ψV of the
vector meson. We shall show that the enhanced end-point
contribution at large Q2 (s � Q2 � m2

V ) actually arises
from 1 � z, z̄ �, |κ|2

Q2 . In this range the z integral is
approximately logarithmic and this contribution can be
identified as the one of the generalized Bjorken evolution
[32, 33] of the two exchanged gluons gg to the exchanged
quark–antiquark qq. The latter exchange involves higher
twist modes.

In this way we are going to show that the soft quark
or end-point contribution can be factorized and included
in the parton distribution of the diffractive exchange. The
factorization of this contributions goes via a qq exchange
instead of gg. The gg coupling to the pomeron is then
restricted to the contribution of the hard (z, z̄ = O(1))
scattering qq dipole.

3 Impact factors

The impact factor with the qq intermediate state and two
leading gluons exchange can be written as (compare Fig. 3)

Φ
λiλf (κ1, κ2)

=
∫

d2�1d2�2dzψλi
i (l1, z)φdipole(�1, l2, κ1, κ2)

×ψλf ∗
f (�2 − zq, z),

φdipole(�1, �2, κ1, κ2)

= αs

[
δ2(�2 − �1) + δ2(�2 − �1 + κ1 + κ2)

− δ2(�2 − �1 + κ1) − δ2(�2 − �1 + κ2)
]
. (3.1)

a b

Fig. 1. a Impact factor form of the γ∗P → V P amplitude.
The rectangular box indicates the exchange interaction and
the dashed line box the unintegrated generalized gluon distri-
bution. b Contribution to the γ∗V impact factor

The first argument in the light-cone wave functions
ψi/f is the transverse momentum relative to the momen-
tum direction of the corresponding particle. The κi are the
transverse momenta components of the exchange gluons,
and κ1 +κ2 = −q is the transverse part of the momentum
transfer.

The γ∗γ∗ impact factor can be treated purely pertur-
batively. It is obtained in the perturbative Regge asymp-
totics as the integral over the right-hand cut of the dis-
continuity of the amplitude γ∗g → γ∗g. The four terms in
φdipole (see (3.1)) correspond to the four ways to couple
the two gluons to qq; one of them is shown in Fig. 1b. The
momentum variables are defined in the Sudakov frame:

Q1 = q′ − x1p, Q2 = q′ − x2p+ q,

l = zq′ − β�p+ �,

ki = αiq
′ − βip+ κi,

2q′p = s. (3.2)

The δ functions of the mass shell condition at the right-
hand discontinuity in the subenergy −2k1Q1 ≈ β1s, e.g.,
for Fig. 1b,

zδ((z − α1)(β1 − β�)s− |�− κ|2 −m2
q)

×z̄δ(z̄(β� − x1)s− |�|2 −m2
q), (3.3)

are used to do the integrals over this subenergy β1s and
also over the loop momentum Sudakov component β�. The
Sudakov components αi of the exchanged gluons are ne-
glected in this step.

The two remaining propagators result in Ψi, Ψf , the
light-cone wave function of γ∗,

Ψ (γ)λ(�, z,Q) = e
V λ(�, z,Q)[
Q2 + |�|2+m2

q

zz̄

] ,
V (0) = Q, V (+1) =

�∗

z
, V (−1) =

�

z
, (3.4)

The sum over the fermion chiralities adds the same with
z ↔ z or amounts to the factor 2 in (3.1)

In the helicity cases λi = λf = ±1 there is an addi-
tional chiral odd term which is included by the substitu-
tion

2V +1(�1, z)V ∗+1(�2, z) = �∗1�2

(
1
z2 +

1
z2

)
+

m2
q

(zz)2
. (3.5)
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As a model for the light-cone wave function of the vector
meson we assume

ΨV λ(�, z) = fV
V λ(�, z,mV )

m2
V

exp

[
−|�|2 +m2

q

zzm2
V

]
. (3.6)

The form is motivated by QCD sum rules; it is formally
obtained by a Borel transformation of the propagator fac-
tor in (3.4) with respect to Q2 and by the substitution of
the Borel variable by m2

V , where mV is of the order of the
meson mass [31]. This wave function, being close to the
one of γ∗, is a particular realization of the phenomenologi-
cally successful concept of vector dominance. Actually the
explicit form of ΨV involves more information than neces-
sary for the asymptotic estimate at large Q. The essential
point in changing from Ψγ to ΨV is in removing the hard
(singular in the impact parameter, the Fourier conjugate
to �) component, while keeping the helicity structure.

In (3.4) and (3.6) we have kept the quark mass to
indicate the possible extension to the case of heavy quark
vector mesons; it will be neglected in the following.

In the Appendix we consider the impact factors in
some detail and calculate the leading twist contribution,
for γ∗γ∗ at Q2

1 = x1s, Q2
2 = x2s, with x1, x2 small and

s → ∞ and for γ∗V at Q2 → ∞, for the representative
cases of polarizations. For the asymptotic estimate we di-
vide the range of z into z0 ≤ z ≤ 1 − z0 = z̄0, 0 < z < z0
and z̄0 < z < 1; we have

Φ = Φ1 + Φz0 + Φz̄0 . (3.7)

The results for z = O(1) are

Φ
λ1λf

1 (q, k) =
∫ 1−z0

z0

ϕ
λiλf

4 (q, k)zzdz,

zzϕ00
4 (q, k) = C00

1
f (2)(k, q)

Q̃2

+ C00
2

{ |f (2,∗∗)|2
Q̃4

1
zz

−
(

4 − 1
zz

)
×
[
|q|2f (2)(k, q)

+
1
2
q∗2f (2,∗∗)(k, q) +

1
2
q2f (2,∗∗)(k, q)

]}
,

zzϕ01
4 (q, k) = C01 f

(3)(k, q)

Q̃3

(
4 − 1

zz

)
, (3.8)

zzϕ10
4 (q, k) = C10 f

∗(3)(k, q)

Q̃3

(
4 − 1

zz

)
,

zzϕ1−1
4 (q, k) = C1−1

1
f (2)∗∗(k, q)

Q̃2

+ C1−1
2

1

Q̃4

{
1
2
f (2)(k, q)f (2)∗∗(k, q)

1
zz

+
[
q∗2f (2)(k, q) − |q|2f (2∗∗)(k, q)

]( 1
zz

− 3
)}

,

zzϕ11
4 (q, k) = C11 f

(2)(k, q)

Q̃2

(
1
zz

− 2
)
.

We have introduced the abbreviations

f (2)(k, q) = k(k + q)∗ + k∗(k + q),

f (2)∗∗(k, q) = 2k∗(k + q)∗,

f (3)(k, q) = q∗f (2)(k, q) +
1
2
qf (2)∗∗. (3.9)

In the case of γ∗V the large scale Q̃2 is just Q2. For a
smoother extrapolation back into the subasymptotic re-
gion we replace Q̃2 = Q2 +m2

V . In the case γ∗γ∗ the large
scale Q̃2 is to be substituted in (3.8) by Q̃2 = s; actually
s enters always multiplied by x1y + x2ȳ which we have
absorbed into the coefficients Cλiλf in this case.

The coefficients Cλiλf depend on x1, x2 in the case of
γ∗γ∗:

Cγ0,0
1 (x1,x2) = −2

√
x1x2Y (x1, x2, 1, 1, 2),

Cγ0,0
2 (x1,x2) = 2

√
x1x2Y (x1, x2, 2, 2, 3),

Cγ0,1(x1,x2) =
√
x1Y (x1, x2, 2, 1, 2),

Cγ1,0(x1,x2) = −
√

2Y (x1, x2, 1, 2, 2), (3.10)

Cγ−1,1
1 (x1,x2) = 2Y (x1, x2, 1, 1, 1),

Cγ−1,1
2 (x1,x2) = −2Y (x1, x2, 2, 2, 2),

Cγ1,1(x1,x2) = x2Y (x1, x2, 0, 2, 2),

with the abbreviation

Y (x1, x2, a, b, c) =
∫ 1

0

dyyayb

(x1y + x2y)
.

In the case γ∗V the coefficients Cλiλf depend on mV

and Q:

CV 0,0
1 = CV 0,0

2 = −2
mV Q

Q2 +m2
V

,

CV 0,1 =
m2

V Q

(m2
V +Q2)3/2 ,

CV 1,0 =
mV

(m2
V +Q2)1/2 , (3.11)

CV 1,−1
1 = −1

2
C1,−1

2 = CV 1,1 =
m2

V

Q2 +m2
V

.

In the asymptotically dominating amplitude λi = λf =
0 we have included the next-to-leading term in the twist
power expansion. This is done in order to demonstrate
that the higher twist terms are accessible in the present
approach and to test their effect on the numerical esti-
mates.

The leading terms of the end-point contributions from
z = O(z0) are

Φ
λiλf
z0 = C

λiλf

0
f (n)(κ, q)

Q̃n
ln
Q̃2z0
|κ|2

−cλiλf (k, q)

Q̃n
ln

|κ|2
|q|2 + O(z0). (3.12)
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The contributions from the other end point, Φz̄0 , are ob-
tained by replacing z0 by z̄0. Here Cλiλf

0 coincide with the
coefficients in front of

∫ 1
zz in Φ

λiλf

1 in (3.8) as expected
for cancelling the auxiliary z0.

4 Factorization of the end-point contributions

As a result of the previous section we have separated the
end-point contributions. Starting from the impact factor
with a reasonable meson wave function we have identi-
fied the end-point contributions for the kinematics Q2 �
|k|2 � m2 ∼ |q|2 as being proportional to∫ z0

|κ|2
Q2

dz +
∫ 1− |κ|2

Q2

z̄0

dz

 1
zz
. (4.1)

We observe that there is no divergence at z, z → 0. Spu-
rious divergences appear only in the extrapolation of the
twist expansion done for z = O(1) (see (3.8)) to z, z → 0.
As we see, the blind extrapolation would neglect terms
with powers of κ2

zzQ2 . The model vector meson wave func-
tion just specifies how the sum of these higher twist terms
removes the end-point divergence and leads to (4.1). This
point would be missed when looking only at the leading
twist term of the qq dipole scattering with two gluon cou-
pling to the exchange.

The γ∗γ∗ impact factor shows the same structure of
end-point contributions at large s. The amplitude is the
one of non-forward virtual Compton scattering in the
Regge asymptotics x1, x2 � 1. The standard short dis-
tance factorization for the Compton amplitude at x1, x2 =
O(1) can be continued into this region. In leading lnQ2

we have two cases. The hard scattering subprocess may
be the one of Compton scattering off a quark which en-
ters the amplitude in convolution with the (generalized)
quark distribution. This means that the coefficient func-
tions start at tree level; the quark loop contributes only
in next-to-leading order. In the other case the hard scat-
tering subprocess is the one of γ∗g → γ∗g via a quark
loop entering the amplitude in convolution with the (gen-
eralized) gluon distribution; the corresponding coefficient
function starts with the one-loop order. This suggests the
way of how to treat the end-point contributions in the
γ∗V case.

We start from the limiting form impact factor at large
Q2 from which we have obtained the end-point contri-
butions (3.12) (compare also in the Appendix (A.5) and
(A.12)),

Φ
V λiλf
z0 =

2
m2

V

∫
d2�′

z
e
− |�′|2

zm2
V

∫ 1

0
dz

×
{
W

λiλf

0

(
m2

V

Q2 +m2
V

, κ, q

)
+ W

λiλf

1

(
m2

V

Q2 +m2
V

, κ, q

) 1
z

Q2 (4.2)

+ qκ∗ + q∗κ+
|�′|2
z

+
|κ|2
z

− · · · (κ+ q = 0) · · ·
}
.

We have restored the integration over the loop transverse
momentum � (see (A.4)), �′ = �− 1

1+λ (κ+zq) ≈ �−κ. Fur-
ther we restore the integrations over the loop momentum
Sudakov components β�, (3.2), and over the subenergy
(q1 − k1)2 ≈ β1s by including the mass shell δ functions
(3.3). We have

Φ
V λiλf
z0 =

∫ 1

0
sdβ1

∫ β1

0
dβ� · · · zδ(z(β1 − β�)s− |�′|2)

×δ((β� − x1)s− |�′ + κ|2). (4.3)

The ellipsis stands for the right-hand side of (4.2). Now
the first δ function is used to do the integral over z; in
particular we make the substitution |�′|2

z = (β1 −β�)s. We
notice that the first term in the argument of the second δ
function dominates for large Q2 = x1s.

We retain only the contributions with a logarithmic
contribution of the z integral. If substituted into the am-
plitude only the structure f (2)(κ, q) results in a logarith-
mic κ integral allowing one to approximate the proton
impact factor by the unintegrated generalized gluon dis-
tribution. In fact we pick up the leading contribution in
the kinematics s � Q2 � |�|2 � |κ|2 � |q|2 ∼ m2

V . We
have

Φ
V λiλf
z0 =

∫ 1

0
sdβ1

∫ β1

0
dβ�1

∫ Q2

|κ|2
d2�′

|�′|2 δ(β�1 − x1) (4.4)

× 2e
−(β1−β�1) s

m2
V

Q̃2 + (β1 − β�1)s

{
W0 |κ|2

Q̃2 + (β1 − β�1)s
+W1

}
.

The resulting end-point contribution to the amplitude has
the form

M
V λiλf
z0 = CV λiλf

f̄ (n)(q)

Q̃n

∫ Q2

m2
V

d2�′

|�′|2αS(|�′|2)

×
∫ 1

0
sdβ1

∫ β1

0
dβ�1δ(β�1 − x1) (4.5)

× PV (β�1, β�2;β1, β2) Gg(β1, β2, q; |�′|2),
where

f̄ (n)(q) =
∫

dϕk
f (n)(κ, q)

|κ|2 .

This is just the evolution term in the integral form of
the generalized GLAPD equation, corresponding to the
parton splitting gg → qq̄. The splitting kernel,

P (β�1, β�2;β1, β2) (4.6)

= β−1
�2 exp

(
−β1 − β�1)

β�2

) [
1 +

β1 − β�1

β�1

]−1−a

,

is an unconventional one, because the resulting qq̄ state
is not the one of leading twist exchange. We have x2 =
β�2 = m2

V

s � 1 and therefore the kernel results in a narrow
distribution peaked around β�1 = β1.
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5 Generalized Bjorken evolution

We consider in some detail the end-point contribution of
the γ∗p → γ∗p amplitude with λi = λf = 1. We expect
to recover the GLAPD evolution gg → qq known from
the case of the structure function F2 and the non-forward
generalization (DVCS).

For simplicity we restrict ourselves to purely longitu-
dinal momentum transfer, q = 0, x1 
= x2. The end-point
contribution to the impact factor reads

Φγ,1,1(k, 0)|z0

=
∫

d2�

∫
z0

0
dz

 e2αS�(�− κ)∗ 1
z2[

x1s+ |�|2
z

] [
x2s+ |�−κ|2

s

]
− · · · (κ = 0) · · ·

 . (5.1)

The subtraction term is obtained from the written term
by substituting κ = 0:

Φγ,1,1(k, 0)|z0

= e2αS

∫
d2�′

z

∫ 1

0
dy

∫ z0

0

dz
z

×

 |�′|2 − y|κ|2[
s(x1y + x2y) + |�′|2

z + |κ|2
z yy

]2 − · · · (κ = 0) · · ·


= e2αS

∫
d2�′

z

∫ 1

0
dy

∫ z0

0

dz
z

(5.2)

×

−2 |�′|2
z |κ|2yy − y|κ|2s(x1y + x2y) + O(|κ|4)[

s(x1y + x2y) + |�′|2
z

]3
 .

As in (4.3) we restore the integration over β1, β� by
including the mass shell δ function. This allows one to
substitute in the integrand

|�′|2
z

= (β1 − βl1)s

= (β2 − βl2)s, βl1 = x1, βl2 = x2,

and in particular

s(x1y + x2y) +
|l′|2
z

= s(β1y + β2y).

We obtain in analogy to the previous section

Φγ,1,1(k, 0)|z0

= e2
|κ|2
s

∫ z0Q2

|κ|2
αS(|�′|2)d|�′|2

|�′|2 (5.3)

×
∫

dβ1dβ2dβl1δ(x1 − x2 − β1 + β2)δ(βl1 − x1)

×
∫ 1

0
dy
β1y + β2y + 2(βl1 − β1)yy

[β1y + β2y]3
Θ(β1 − x1).

The result contributes to the amplitude γ∗p → γ∗p (λi =
λf = 1) by convolution with the unintegrated gluon dis-
tribution,

Mγ,11 = e2
∫ z0Q2

m2
V

αS(|�|2)d|�|2
|�|2

∫ 1

0
dβ1dβ2

× δ(x1 − x2 − β1 + β2)P (x1, x2;β1, β2)
× Gg(β1, β2; q = 0, |�|2). (5.4)

As expected, this result has the form of the evolution term
in the integral representation of the GLAPD equation with
the (non-forward) splitting kernel:

P (x1,x2;β1, β2) =
Θ(β1 − x1)

β1β2
(1 + O(β1 − x1)). (5.5)

We compare P (x1,x2;β1, β2) with the generalized GLAPD
evolution kernel as calculated in [40]:

H(x1, x2, β1, β2) (5.6)

=
1

β1β2

{
x1(J1 − J11′) + (x1 − β1)J1 + (β1 ⇔ β2)

}
,

J1 =
∫ ∞

−∞

dα
2πi

[αx1 + 1 − iε]−1[−αx2 + 1 − iε]−1

× [α(x1 − β1) + 1 − iε]−1,

J11′ =
∫ ∞

−∞

dα
2πi

[αx1 + 1 − iε]−1[α(x1 − β1) + 1 − iε]−1.

The first (second) term in the brackets corresponds to the
gg → qq transition without (with) spin flip. For the impact
factor the right-hand cut discontinuity in β1s is relevant:

discβ1H

=
1

β1β2

{
x1

β1

x2

β2
+

(x1 − β1)(x2 − β2)
β1β2

}
Θ(β1 − x1)

= P (x1, x2;β1β2). (5.7)

The familiar forward splitting kernel for gg → qq is recov-
ered for β1 = β2, x1 = x2.

The comparison of (5.7) and (5.5) confirms that the
end-point contribution to the diffractive amplitude writ-
ten in the impact factor representation is to be absorbed
into the evolution of the generalized gluon distribution.
Since the impact factor ansatz accounts for the Regge
asymptotics the corresponding evolution contribution re-
sults merely in this approximation; in particular the
subenergy (Q1 − k1)2 � s(β1 −x1) is small in this asymp-
totics.

6 Amplitudes and numerical estimates

The decomposition of the z range in the impact factor
(3.7) leads to the result that the amplitude can be taken
to be a sum of the corresponding three terms, Mλi,λf =
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M
λi,λf

1 +M
λi,λf
z0 +M

λi,λf

z̄0
. According to (2.3) the contri-

bution from z = O(1) is calculated as

M
λi,λf

1 =
∫ Q2

m2
V

d2κ

∫ z̄0

z0

zz̄ϕ
λiλf

4 (q, κ)dz
1

|κ|2|q + κ|2
×G′

g(x1, x2, q, |κ|2). (6.1)

The leading lnQ2 contribution of the integral over κ
results in

M
λi,λf

1 ≈
(∫ z̄0

z0

zz̄ϕ̄
λiλf

4 dz
)

·Gg(x1, x2, q;Q2). (6.2)

Here ϕ̄λiλf

4 are the coefficients in (3.8) accompanying
f (2)(κ, q) as in (2.6). For example, in the case λi = λf = 1
we have

M11
1 ≈

(∫ z̄0

z0

(
1
zz̄

− 2
)

dz
)

CV 11

Q2 +m2
V

·Gg(x1, x2, q;Q2).

(6.3)
The end-point contributions are not small with z0 for the
terms in (3.8) involving 1

zz̄ . As explained in Sect. 4 the
logarithmic z integral is a generalized Bjorken evolution
(4.5) term resulting in the effective quark distribution

G̃q(x1, x2, q, z0Q
2)

=
∫ z0Q2

m2
V

d|�|2
|�|2

αS(|�|2)
αS(Q2)

Gg(x1, x2, q, |�|2). (6.4)

In the example λi = λf = 1 this leads to

M11
z0

= M11
z̄0

=
CV 11

Q2 +m2
V

· G̃q(x1, x2, q, z0Q
2). (6.5)

The sum of the three contributions to the amplitude
has the form (2.7). Notice that the effective quark dis-
tribution has been identified with the Bjorken evolution
term of the gluon distribution. This entails the reasonable
assumption that this distribution is small for small x at
the scale m2

V .
The generalized gluon distribution at small x1/2 is

adopted here to be proportional to the ordinary small x
gluon distribution

Gg(x1, x2, q, Q
2) = c Gg

(
x1 + x2

2
, Q2

)
e−b|q|2 . (6.6)

For the slope parameter we adopt the value b = 6 GeV−2.
The generalized Bjorken evolution leads to a modifica-

tion of this relation if it is assumed to hold at some Q2
0.

This effect has been investigated for small x and small
skewedness [39] and has been applied to diffractive vec-
tor meson production [20]. In the latter paper the Q2

dependence of the cross sections is found to be changed
by 50 per cent for light vector mesons at the highest
Q2 (= 30 GeV2). Since the aim of the numerical estimates
in this paper is merely the illustration of the proposed
factorization concept, we do not include the skewedness

effects here for simplicity, understanding that this would
be an appropriate further improvement.

Further, for the numerical estimate we have to specify
the gluon distribution. Although our approach is based on
the asymptotic expansion, in Q2 for a comparison with the
data we have to extrapolate the results to non-asymptotic
values of this scale. Moreover, in the reconstruction of
the effective quark distribution according to (6.4) we have
to integrate the small x gluon distribution starting from
m2

V ≈ .5 GeV2. This means that we need the gluon distri-
bution at small scales, where the standard parameteriza-
tions like MRST do not give a certain answer and where
the application of the evolution equation is not reliable.
Therefore we adopt the two-pomeron parameterization
[28],

Gg(x,Q2) ∼ X0

 Q2

1 + Q2

Q2
0

1+ε0 (
1 +

Q2

Q2
0

)ε0/2

x−ε0−1

+X1

(
1 +

Q2

Q2
1

)ε1/2

x−ε1−1,

where ε0 = 0.43, ε1 = 0.08, X0 = 0.0014, X1 = 0.5954,
Q2

0 = 9.108, Q2
1 = 0.5894.

Again, we have no particular reason to favor this pa-
rameterization besides of its convenience for use as an il-
lustration. We did not try to optimize the results with
regard to different possible input parameterizations.

The cut-off z0 is to separate the z range of order unity
from the end-point regions; a value z0 = 0.1, · · · , 0.2 is
reasonable and indeed in this range the z0 dependence of
the result is weak. The condition that z0Q2 is much larger
than m2

V leads to the restriction of the applicability of the
estimates to Q2 > 5 GeV2.

We have calculated in the given approximation with
the input specified above the Q2 dependence of the ra-
tio of longitudinal to transverse virtual photon diffractive
cross sections. We do this including all helicity amplitudes
(R) and also with the helicity conserving amplitudes only
(R0), the latter case corresponds to the ratio usually ob-
tained in the data analysis. Thus we calculate

R(Q2) =
σL(Q2)
σT(Q2)

, R0(Q2) =
σ

(0)
L (Q2)

σ
(0)
T (Q2)

, (6.7)

where

σL(Q2) =
∫

dt(|M00|2 + 2|M01|2),

σ
(0)
L (Q2) =

∫
dt|M00|2,

σT(Q2) =
∫

dt(|M11|2 + |M10|2 + |M1−1|2),

σ
(0)
T (Q2) =

∫
dt|M11|2. (6.8)

The results are shown in Fig. 2 together with HERA data.
R0 deviates from R by 10 per cent at higher Q2. The in-
clusion of the next-to-leading terms in the twist expansion
does not lead to noticeable changes.



360 A. Ivanov, R. Kirschner: Electroproduction of vector mesons: factorization of end-point contributions

Fig. 2. Ratio of the longitudinal and transverse elastic ρ0 elec-
troproduction cross sections as a function of Q2. The dotted
line corresponds to the assumption of helicity conservation, the
solid line takes into account spin flip amplitudes

The coefficients in the angular-decay distribution are
more sensitive to the helicity dependence, because in some
of them the small flip amplitudes enter in the first power.
We use the following expressions for the coefficients rα

ik

in terms of the helicity amplitudes Mλiλf simplified in
comparison to [24] for the appropriate case of the virtual
photon polarization parameters being ε ≈ 1, δ ≈ 0. We
have

r0400 ∝ 1
N

(|M00|2 + |M10|2),

r500 ∝ 1
N

Re(M00∗M10),

r511 ∝ (Re(M01M∗11) − Re(M01M∗1−1)),

r100 ∝ − 1
N

|M10|2,

r111 ∝ 1
N

(M1−1M∗11 +M11M∗1−1),

N = |M00|2 + |M10|2 + 2|M01|2 + |M11|2 + |M1−1|2.
Results are given for r0400, r

1
00 + 2r511, r

1
00 + 2r111. In the

data analysis the first coefficient is extracted from the de-
pendence on the polar angle of the π+ in the vector meson
rest frame with respect to the vector meson momentum
direction. Actually R0 is obtained from this coefficient by
a formula valid for the ratio in the approximation of he-
licity conservation. The other combinations are the ones
obtained in the data analysis from the dependence on the
angle between the lepton scattering and vector meson pro-
duction planes.

The t dependence of the coefficients rα
ij has been cal-

culated at a fixed value of Q2 = 10 GeV2. The results
are shown in Fig. 3 in comparison with the data for the
broad range Q2 = 3, · · · , 30 GeV2 with the average values
of 6.5 GeV2 for the ZEUS data points and 5 GeV2 for the
H1 data points.

In evaluating the Q2 dependence we have substituted
in the amplitudes the average value of t determined by the
slope parameter b. The results are shown in Fig. 4.

Fig. 3. r5
00 + 2r5

11, r1
00 + 2r1

11, r04
00 as a function of transferred

momentum t

7 Discussion

The diffractive γ∗V amplitudes constructed with a qq̄
dipole impact factor involve enhanced contributions from
the end-point regions in the quark longitudinal momen-
tum fraction z, besides the leading contribution to the
λi = λf = 0 helicity amplitude. These end-point con-
tributions appear as singularities in the extrapolation of
the twist expansion. However, resummed corrections pro-
portional to

(
m2

V

zz̄Q2

)n

remove the singularities at z, z̄ = 0
and result in logarithmically enhanced end-point contri-
butions. The latter are shown to be the ones of the gener-
alized Bjorken evolution of the t-channel parton exchange
gg → qq̄. The short distance factorization of the diffrac-
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Fig. 4. r5
00 + 2r5

11, r1
00 + 2r1

11, r04
00 as a function of Q2

tive amplitude in terms of the γ∗V transition and the
pomeron exchange therefore involves contributions of two
types: one with a scattering qq̄ dipole coupled by gg to the
pomeron and one with a (Compton-like) scattering q or q̄
coupled by qq̄ to the pomeron. The qq̄ exchange differs
from the leading twist one.

We have chosen the impact factor form of the diffrac-
tive amplitude as a starting point. Our lack of understand-
ing of the proton impact factor and of the pomeron cou-
pling to it has been managed by replacing their convolu-
tion by the unintegrated generalized parton distribution,
a standard step in kT factorization schemes. This is justi-
fied in so far as it results at large Q2 in the parton distri-
bution convoluted with the coefficient function resulting

from the γ∗V impact factor. Notice that in the leading
lnQ2 approximation, contributions of the impact factors,
depending on the azimuthal angle of the exchanged parton
momentum, κ

|κ| , drop out. We see here a possible source
of corrections, which may be relevant at moderate Q2.

The resulting large Q2 asymptotics of the amplitudes
consists of terms with the generalized small x gluon dis-
tribution and with the effective qq̄ distribution. The latter
appears as an additional non-perturbative input. However,
its main contribution results from the evolution of the
gluon distribution with a splitting function transferring
the longitudinal momentum fraction from g to q almost
unchanged.

In this way we see that the construction of the diffrac-
tive amplitude with a scale of the gluon distribution re-
placed by zz̄Q2 [19] is actually an approximation to the
factorization proposed here, because with that scale re-
placement the end-point contributions of the z-integration
are approximately the qq̄ exchange contribution by gg →
qq̄ evolution. This scale replacement has been applied in
a previous study of the polarization effects [21].

In our construction the terms ∼
(

m2
V

zz̄Q2

)n

improving
the end-point behavior are introduced via the vector me-
son light-cone wave function. It is modelled starting from
the perturbative γ∗ wave function by keeping its helic-
ity structure and removing its hard contributions. Wave
functions sharing these basic features lead to similar re-
sults for the large Q2 helicity amplitudes. In the present
scheme the higher twist correction to the amplitudes can
be calculated. The leading asymptotics involves the value
of the impact parameter wave function at the origin and
this can be recast in of the distribution amplitude formu-
lation.

We did not include the hard scale evolution of the wave
function [33]. In the numerical estimates we did not in-
clude the skewedness effects. We have used a particular
parameterization of the small x gluon distribution cov-
ering the small Q2 range needed in particular for recon-
structing the effective qq̄ distribution therefrom.

The results for the cross section ratio and the Schilling–
Wolf coefficients have been calculated using this input
with no attempts of fitting. We have shown that they de-
scribe the basic features of the data.

Including the mentioned improvements the proposed
factorization scheme provides a theoretical framework ap-
plicable to diffractive electroproduction free of previous
uncertainties about the end-point contributions and there-
fore useful for extracting information about the structure
of the hadrons involved from data analysis. We expect that
this scheme applies to other hard diffractive processes.
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Table 1. List of the numerator
〈
V λi

i V
∗λf

f

〉′
(y, Q1, Q2) for the

representative cases of the helicities

λi λf

〈
V λi

i V
∗λf

f

〉′
(y, Q1, Q2)

0 0 2Q1Q2

0 -1 −Q1y(κ + zq)
( 1

z
− 1

z

)
1 0 Q2y(κ + zq)∗ ( 1

z
− 1

z

)
1 -1 yy(κ + zq)∗ 2

zz

1 1 − [|κ + zq|2y + zzQ2
1
] ( 1

z2 + 1
z2

)

Appendix

We take the simple form of (3.1) into account and write

Φ(k, q) =
∫ 1

0
dzzz[ϕ(k, z, q) + ϕ(−k − q, z, q)

− ϕ(0, z, q) − ϕ(−q, z, q)],
ϕ(k, z, q) =

∫
d2�1d2�2δ(�2 − �1 − κ− zq)

× Ψλi
i (�1)Ψ

∗λf

f (�2). (A.1)

For the γ∗γ∗ case we have

ϕγ(κ, q, z) =
∫

d2�
e2αSV

λiV λf ∗[
Q2

1 + |�|2+m2
q

zz̄

] [
Q2

2 + |�−κ−zq|2+m2
q

zz̄

] .
(A.2)

Doing the integration over the transverse momentum we
obtain

ϕγ(κ, z, q) = e2αSπ

∫ 1

0

dy
yy

〈
V λi

i V
λf ∗
f

〉′
(y,Q1, Q2)[

Q2
1

y + Q2
2

y + m2
q

zzyy + |κ+zq|2
zz

] .
(A.3)

For the γ∗V case we have

ϕV (κ, q, z) =
∫

d2�2 exp

(
−|�2|2 +m2

q

m2
V zz̄

)

× efV αSV
λiV λf ∗[

Q2 + |�2−κ−zq|2+m2
q

zz̄

]
m2

V

. (A.4)

The result of the integration over �2 can be written as

ϕV (κ, z, q)

= efV αSπ

∫ 1

0

dλ
1 + λ

〈
V λi

i V
λf ∗
f

〉′ (
λ

1+λ , Q1,mV

)
m2

V

(A.5)

× exp

[
− Q2

m2
V

λ− m2
q(1 + λ)
zzm2

V

− |κ+ zq|2
m2

V zz

λ

1 + λ

]
.

We list the numerator
〈
V λi

i V
∗λf

f

〉′
(y,Q1, Q2) for the

representative cases of the helicities in Table 1.

As expected, the resulting expressions obey

ϕ(κ, z, q) = ϕ(−κ− q, z, q), (A.6)

and in the integral (A.1) the number of terms can be re-
duced to two.

We calculate the asymptotics of the integral at first for
z = O(1) for the γ∗γ∗ case in the region s → ∞, Q2

i = sxi,
with fixed xi � 1,

ϕγ(k, z, q)

= e2αSπ

∫ 1

0
dy

〈
V λi

i V
∗λf

f

〉′
(y, sx1, sx2) (A.7)

×
{

1
s
(x1y + x2y)−1 − 1

s2
|κ+ zq|2yy

(x1y + x2y)2zz
+ O

(
1
s3

)}
,

and for the case γ∗V in the region Q2 → ∞,

ϕV (κ, z, q)

≈ efV αSπ
〈
V λi

i V
∗λf

f

〉′ ( m2
V

Q2 +m2
V

, Q1,mV

)
(A.8)

×
{

1
Q2 +m2

V

− |κ+ zq|2
(Q2 +m2

V )zz
+ O

(
1

(Q2 +m2
V )3

)}
.

Notice that the numerator includes terms proportional to
s or Q2 if λi = λf . A further term in the expansion has
to be included, leading to cancellation if λi = λf = ±1.
In the case γ∗V it is appropriate to choose the expansion
parameter as m2

V

Q2+m2
V

, resulting in an improvement of the

extrapolation in the region of moderate Q2 > m2
V .

We obtain in the case γ∗γ∗

ϕγ,00(κ, z, q)zz

= Cγ,00
1 (x1, x2)

|κ+ zq|2
s

+ Cγ,00
2 (x1, x2)

|κ+ zq|4
s2

1
zz

+O
(

1
s3

)
, (A.9)

ϕγ,01(κ, z, q)zz

= Cγ,01
1 (x1, x2)

|κ+ zq|2(k + zq)
s3/2

(
1
z

− 1
z

)
+O

(
1
s3

)
,

ϕγ,10(κ, z, q)zz

= Cγ,10
1 (x1, x2)

|κ+ zq|2(κ+ zq)∗

s3/2

(
1
z

− 1
z

)
+ O

(
1
s3

)
,

ϕγ,1−1(κ, z, q)zz

= Cγ,1−1
1 (x1, x2)

(κ+ zq)∗2

s

+ Cγ,1−1
2 (x1, x2)

(k + zq)∗2|κ+ zq|2
s2

1
zz

+ O
(

1
s3

)
,

ϕγ,11(κ, z, q)zz

= Cγ,11
1 (x1, x2)

|κ+ zq|2
s

zz

(
1
z2 +

1
z2

)
+ O

(
1
s3

)
.

We use the abbreviation for Cγ of (3.10). In the case
γ∗V we have similar fomulae.
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Table 2. Expressions for calculation of the integrand of (A.1)

ϕ(κ, z, q) ϕ4(κ, z, q)

|κ + zq|2 κ(κ + q)∗ + κ∗(κ + q) = f (2)(k, q)
(κ + zq)|κ + zq|2 (z − z)(f (2)(κ, q) + q∗κ(κ + q)) = (z − z)f (3)(κ, q)
(κ + zq)∗2 2κ∗(κ + q)∗ = f (2,∗∗)(κ, q)
(κ + zq)∗2|κ + zq|2 1

2f (2)f (2,∗∗) + (1 − 3zz)[q∗2f (2) + |q|2f (2,∗∗)]

|κ + zq|4 1
4 |f (2,∗∗)|2 + (1 − 4zz)

[
|q|2f (2) + 1

2q∗2f (2,∗∗)∗ + 1
2q2f (2,∗∗)

]

When calculating the integrand of (A.1),

ϕ4 = ϕ(κ, z, q) + ϕ(−κ− q, z, q) − ϕ(0, z, q) − ϕ(−q, z, q),
(A.10)

the dependence on z and κ, κ+ q disentangles. We list the
relevant expressions in Table 2.

In this way we obtain the twist expansion valid for
z = O(1). The result for the case γ∗V is given in (3.8); the
one for γ∗γ∗ can be recovered by substituting f(n)

(Q2+m2
V )n/2

by f(n)

sn/2 and CV,λi,λf by Cγ,λi,λf .
We now calculate the end-point contribution to the

asymptotic expansion in s for the γ∗γ∗ case:∫ z0

0
zzϕγ(κ, z, q)dz

=
∫ 1

0
dy

∫ z0

0
dz

× W0(y, κ) +W1(y, κ) 1
z[

s(x1y + x2y) + yy(κq∗ + κ∗q + |κ|2) + |κ|2yy
z

]
+ O(z0), (A.11)

and in Q2 for the γ∗V case:∫ z0

0
zzϕV (κ, z, q)dz (A.12)

=
∫ z0

0
dz

W0

(
m2

V

Q2+m2 , κ
)

+W1

(
m2

V

Q2+m2 , κ
)

1
z[

Q2 +m2
V + (κq∗ + κ∗q + |κ|2) + |κ|2

z

]+O(z0).

The numerator results from the expansion of zz〈ViVf 〉′ for
small z. W1 is non-vanishing only in the case λi = λf =
±1. In the case λi = λf = 0 both W0 and W1 vanish,
here the small z expansion in the numerator starts with
W−1 ∼ z.

Thus we are lead to calculate the integrals

Ia(κ,Q2) =
∫ z0

0
dz

z−a[
Q2 + |κ|2

z

] (A.13)

=
(

−|κ|2
Q2

)−a+1

Q−2 ln
Q2z0 + |κ|2

|κ|2 + O(z0)

and obtain∫ z0

0
zzϕV (κ, z, q)dz

= W1(y, κ)I1(κ, Q̃2) +W0(y, κ)I0(κ, Q̃2) + O(z0).

In the case γ∗γ∗ we have to substitute Q̃2 by s(x1y+x2y)+
yy(κq∗ +κ∗q); in the vector meson case we substitute y by

m2
V

Q2+m2
V

and Q̃2 by Q2 +m2
V + κ∗q+ κq∗. The small term

(κ∗q + κq∗) matters in the case λi = λf = ±1 only. For
illustration it is enough to do one case, γ∗V, λi = 0, λf =
1, explicitly: W1 = 0,W0 = −yQκ,

ΦV,01|z0 =
∫ z0

0
zzϕV,01

4 (κ, z, q)dz

≈ π
m2

V Q

(m2
V

+Q2)

{
κ|κ|2
Q4 ln

Q2z0 + |κ|2
|κ|2

− (κ+ q)|κ+ q|2
Q4 ln

Q2z0 + |κ+ q|2
|κ+ q|2

− q|q|2
Q4 ln

Q2z0 + |q|2
|q|2

}
. (A.14)

In the kinematics z0Q2 � |κ|2 � |q|2 this can be
approximated by

ΦV,01|z0 ≈ π
m2

V Q

(m2
V

+Q2)3/2

{
f (3)(κ, q)

(m2
V +Q2)3/2 ln

Q2z0
|κ|2

}
.

(A.15)
In this way we obtain (3.12) confirming the matching

with the expression (3.8) for z = O(1), i.e. the cancellation
of the auxiliary z0.
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